Bayesian analysis of factorial experiments by mixture modelling
نویسنده
چکیده
A Bayesian analysis for factorial experiments is presented, using finite mixture distributions to model the main effects and interactions. This allows both estimation and an analogue of hypothesis testing in a posterior analysis using a single prior specification. A detailed formulation based on this approach is provided for the case of the two-way model with replication, allowing interactions. Issues in formulating a suitable prior are discussed in detail, and, in the context of two illustrative applications, we discuss implementation, presentation of posterior distributions, sensitivity and performance of the Markov chain Monte Carlo methods that are used.
منابع مشابه
A Bayesian Networks Approach to Reliability Analysis of a Launch Vehicle Liquid Propellant Engine
This paper presents an extension of Bayesian networks (BN) applied to reliability analysis of an open gas generator cycle Liquid propellant engine (OGLE) of launch vehicles. There are several methods for system reliability analysis such as RBD, FTA, FMEA, Markov Chains, and etc. But for complex systems such as LV, they are not all efficiently applicable due to failure dependencies between compo...
متن کاملLarge Scale Variational Bayesian Inference for Structured Scale Mixture Models
Natural image statistics exhibit hierarchical dependencies across multiple scales. Representing such prior knowledge in non-factorial latent tree models can boost performance of image denoising, inpainting, deconvolution or reconstruction substantially, beyond standard factorial “sparse” methodology. We derive a large scale approximate Bayesian inference algorithm for linear models with nonfact...
متن کاملA Bayesian mixture model for classification of certain and uncertain data
There are different types of classification methods for classifying the certain data. All the time the value of the variables is not certain and they may belong to the interval that is called uncertain data. In recent years, by assuming the distribution of the uncertain data is normal, there are several estimation for the mean and variance of this distribution. In this paper, we co...
متن کاملBayesian Time Series Analysis
This article describes the use of Bayesian methods in the statistical analysis of time series. The use of Markov chain Monte Carlo methods has made even the more complex time series models amenable to Bayesian analysis. Models discussed in some detail are ARIMA models and their fractionally integrated counterparts, state-space models, Markov switching and mixture models, and models allowing for...
متن کاملBayesian Time Series Analysis
This article describes the use of Bayesian methods in the statistical analysis of time series. The use of Markov chain Monte Carlo methods has made even the more complex time series models amenable to Bayesian analysis. Models discussed in some detail are ARIMA models and their fractionally integrated counterparts, state-space models, Markov switching and mixture models, and models allowing for...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2000